Hilbert's 16th Problem and bifurcations of Planar Polynomial Vector Fields
نویسنده
چکیده
The original Hilbert’s 16th problem can be split into four parts consisting of Problems A–D. In this paper, the progress of study on Hilbert’s 16th problem is presented, and the relationship between Hilbert’s 16th problem and bifurcations of planar vector fields is discussed. The material is presented in eight sections. Section 1: Introduction: what is Hilbert’s 16th problem? Section 2: The first part of Hilbert’s 16th problem. Section 3: The second part of Hilbert’s 16th problem: introduction. Section 4: Focal values, saddle values and finite cyclicity in a fine focus, closed orbit and homoclinic loop. Section 5: Finiteness problem. Section 6: The weakened Hilbert’s 16th problem. Section 7: Global and local bifurcations of Zq−equivariant vector fields. Section 8: The rate of growth of Hilbert number H(n) with n.
منابع مشابه
Monodromy problem for the degenerate critical points
For the polynomial planar vector fields with a hyperbolic or nilpotent critical point at the origin, the monodromy problem has been solved, but for the strongly degenerate critical points this problem is still open. When the critical point is monodromic, the stability problem or the center- focus problem is an open problem too. In this paper we will consider the polynomial planar vector fields ...
متن کاملUpper bounds for the number of orbital topological types of planar polynomial vector fields “ modulo limit cycles ”
The paper deals with planar polynomial vector fields. We aim to estimate the number of orbital topological equivalence classes for the fields of degree n. An evident obstacle for this is the second part of Hilbert’s 16th problem. To circumvent this obstacle we introduce the notion of equivalence modulo limit cycles. This paper is the continuation of the author’s paper in [Mosc. Math. J. 1 (2001...
متن کاملBifurcations of Limit Cycles in a Z2-equivariant Planar Polynomial Vector Field of Degree 7
One of the main problems in the qualitative theory of real planar differential systems is the determination of number and relative positions of limit cycles. The problem concerns “the most elusive” second part of Hilbert’s 16th problem (see [Smale, 1998; Lloyd, 1988]). In 1983, Jibin Li (see [Li, 2003; Li & Li, 1985; Li & Liu, 1991, 1992]) posed a method of detection functions to investigate po...
متن کاملBifurcations of limit cycles in a Z4-equivariant planar polynomial vector field of degree 7
One of the main problems in the qualitative theory of real planar differential systems is the determination of number and relative positions of limit cycles. The problem concerns “the most elusive” second part of Hilbert’s 16th problem (see [Smale, 1998; Lloyd, 1988]). In 1983, Jibin Li (see [Li, 2003; Li & Li, 1985; Li & Liu, 1991, 1992]) posed a method of detection functions to investigate po...
متن کاملBifurcation Set and Limit Cycles Forming Compound Eyes in a Perturbed Hamiltonian System
BIFURCATION SET AND LIMIT CYCLES FORMING COMPOUND EYES IN A PERTURBED HAMILTONIAN SYSTEM JIBIN LI AND ZHENRONG LIU In this paper we consider a class of perturbation of a Hamiltonian cubic system with 9 finite critical points . Using detection functions, we present explicit formulas for the global and local bifurcations of the flow . We exhibit various patterns of compound eyes of limit cycles ....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- I. J. Bifurcation and Chaos
دوره 13 شماره
صفحات -
تاریخ انتشار 2003